Some Experiments On Face Recognition With Neural Networks
نویسندگان
چکیده
This paper presents some results on the possibilities offered by neural networks for human face recognition. In particular, two algorithms have been tested: learning vector quantization (LVQ) and multilayer perceptron (MLP). Two different approaches have been taken for each case, using as input data either preprocessed images (gray level or segmented), or geometrical features derived from a set of manually introduced landmarks. The preprocessing steps included resolution reduction and segmentation. For the geometrical features ́ case, a Karhunen-Loeve expansion was used to extract features among the different possibilities offered by 14 landmark points. For the experiments, a database composed of 300 images was used. The pictures correspond to 10 frontal, inclined o rotated views from thirty male persons of similar age and race. If gray level images are used as input data, the experimental results show higher recognition rates for LVQ than for MLP (96.7% versus 83.3%). Applying a previous segmentation stage strongly decreases the recognition rates. For geometrical features, the situation is reversed: MLP yields better results than LVQ (93.3% versus 84.4%).
منابع مشابه
Introducing a method for extracting features from facial images based on applying transformations to features obtained from convolutional neural networks
In pattern recognition, features are denoting some measurable characteristics of an observed phenomenon and feature extraction is the procedure of measuring these characteristics. A set of features can be expressed by a feature vector which is used as the input data of a system. An efficient feature extraction method can improve the performance of a machine learning system such as face recognit...
متن کاملPersian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کاملFace Detection with methods based on color by using Artificial Neural Network
The face Detection methodsis used in order to provide security. The mentioned methods problems are that it cannot be categorized because of the great differences and varieties in the face of individuals. In this paper, face Detection methods has been presented for overcoming upon these problems based on skin color datum. The researcher gathered a face database of 30 individuals consisting of ov...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملOn the use of Textural Features and Neural Networks for Leaf Recognition
for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...
متن کامل